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Effects of Nutritional Factors on
Metabolism of Dietary Cadmium at
Levels Similar to Those of Man

by M. R. Spivey Fox,* R. M. Jacobs,* A. O. Lee Jones,*

and Bert E. Fry, Jr.*

Several nutrients are known to affect cadmium toxicity, but little is known about the effect of dietary
nutrient levels on absorption and tissue retention of cadmium at low dietary levels, similar to those of
man. Feeding graded levels of zinc in a casein-gelatin diet to young Japanese quail with *°Cd (as the
chloride) and 0.062 ppm added cadmium decreased the cadmium concentrations in the proventriculus-
ventriculus, duodenum, jejunum-ileum, and the liver, but not in the kidney. Zinc also affected some zinc,
iron, manganese, and copper tissue levels. Different tissue concentration patterns of cadmium and essen-
tial minerals were obtained with two purified control diets, one based on casein-gelatin and the other on
soy isolate as the principal protein sources. The data show that relatively small dietary changes can
markedly affect tissue levels of cadmium and that a low intake of zinc may increase the risk to dietary
cadmium exposure. The complexity of the nutrient interrelationships and their effects on cadmium
require further study to define mechanisms, which may be similar to those produced by low cadmium

intakes in man.

Introduction

Many investigators have shown that the nutrient
composition of the diet can markedly influence the
severity of toxic manifestations that occur after a
few days or weeks of feeding high levels of cad-
mium. Single deficiencies of zinc, copper, iron, and
calcium, and combined deficiencies of calcium,
zinc, and protein markedly exacerbated the toxic
effects of cadmium. Supplements of zinc, copper,
iron (primarily the divalent form as ferrous sulfate),
ascorbic acid, and L-cysteine were shown to be
protective. These nutrient-cadmium interactions
have been reviewed (I -4).

The practical problems of cadmium toxicity in
man are not due to high levels of cadmium intake,
but rather to very long-term cadmium accretion in
the kidney until levels that can cause kidney dam-
age occur (5). Experimental data that are most per-
tinent to man include those from studies on the ef-
fects of dietary nutrient levels on absorption and
long-term retention of very low levels of dietary
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cadmium, similar to the intakes of man (6). Func-
tional and morphological changes in the kidney
under these conditions need to be investigated. The
tissue retention of single oral doses of radioactive
cadmium with low total cadmium intakes has been
elevated by deficiencies of iron (7, 8), calcium (9),
and protein (/0). Hamilton and Smith (//) produced
a change in the distribution of a tracer dose of
usmCd between the liver and kidneys by feeding a
low calcium diet; however, calcium level had no
effect on the total amount of '>"Cd in the two or-
gans.

Jacobs et al. (12) found that simultaneously dou-
bling dietary levels of zinc, copper, and manganese
in a soy isolate diet caused a marked decrease in the
retention of '®Cd (fed as the chloride to Japanese
quail between 7 and 14 days of age) in the liver,
kidneys, and jejunum-ileum. Cadmium in the
duodenum was not affected. The total dietary levels
of cadmium, 0.020, 0.082, 0.145, 0.270, 0.520, and
1.020 ppm, bracketed dietary concentrations equiv-
alent to the intake of man (approximately 0.08-0.10
ppm), assuming the absence of moisture and fiber
for similarity to the type of diet fed in the bird ex-
periment. With both the basal and supplemented
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diets, cadmium accumulated in the duodenum,
liver, and kidney in a linear log-dose, log-response
relationship. Within each of the two dietary ma-
trices, the percentage retention of the 1*Cd dose in
each tissue was the same at each cadmium dose
level. The same supplement also had a beneficial
effect on the long-term whole body retention curve
in accelerating the loss of 1'5™Cd (total 1 ppm cad-
mium) that had been fed in the diet to Japanese quail
between 7 and 14 days of age (/3). Zinc was shown
to be the primary component of the three-element
supplement responsible for lower tissue cadmium
concentrations following the 7-day feeding regime
(14). Copper and manganese had small effects,
which included increases in some tissue concentra-
tions of cadmium. Jacobs et al. (15) showed that in
birds fed a soy diet, concentrations of a dietary
tracer of Cd (total 0.145 ppm cadmium) in the
jejunum-ileum, liver, and kidneys declined as die-
tary zinc was increased from 15 to 30 and 60 ppm in
the diet; 120 ppm zinc had no further effect.

The capacity of the small intestine of young
Japanese quail to accumulate cadmium results in
significant concentrations of cadmium in both the
duodenum and the jejunum-ileum of birds fed basal
diets. The cadmium level is sufficiently high to per-
mit assay by flame atomic absorption spec-
trophotometry. The high correlation between de-
creases in jejunal-ileal concentrations of cadmium
and decreases in liver and kidney cadmium led Fox
et al. (I6) to use the concentration of cadmium in
the jejunum-ileum as an index of cadmium bio-
availability from human foods. With the soy isolate
diet, cadmium (as the chloride) fed to give total
dietary concentrations of 0.082, 0.145, and 0.270
ppm cadmium resulted in linear relationships be-
tween the logs of dietary cadmium concentrations
and logs of duodenal and jejunal-ileal cadmium con-
centrations. The concentrations of cadmium in the
two small intestinal segments were significantly
lower with the casein-gelatin diet than with the soy
isolate diet. The relative bioavailability value (as
compared with cadmium as the chloride) for oysters
was similar with the two diets, 38 + 18% and 48 +
13% with the soy and casein-gelatin diets, respec-
tively. Earlier studies by Fox et al. (/7) had shown
marked differences in cadmium toxicity and tissue
mineral levels when soy isolate, casein-gelatin, or
dried egg white was the dietary protein source.
From these varied data, it was concluded that in-
vestigations of single nutrient variables and of foods
(plant and animal) intrinsically labeled with 1°°Cd
during growth are needed to identify dietary com-
ponents (singly and together) that can affect ac-
cumulation of cadmium in the liver and kidneys and
to establish the relationships between cadmium
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concentrations in the jejunum-ileum and those in
the liver and kidneys.

Casein and gelatin typically contain lower levels
of contaminant minerals and other complicating
factors, such as phytate, and thus contribute to a
better dietary matrix for studying mineral interac-
tions than does soy isolate. Variations in mineral
levels between batches are usually less for casein
and gelatin than for soy isolate. The purpose of the
present study was to determine the effect of vari-
able dietary zinc concentrations in a casein-gelatin
diet upon tissue cadmium levels derived from low
dietary cadmium intake and to compare soy isolate
with casein-gelatin as protein sources when the zinc
concentrations were at the required level for each
diet.

Experimental Procedures

Day-old Japanese quail (Coturnix coturnix
Japonica) of both sexes from our stock colony were
housed in heated, continuously lighted, suspended
stainless steel cages. Precautions to avoid environ-
mental and dietary contamination with trace ele-
ments were observed. The birds were housed one
group per cage except for birds 7-14 days of age in
experiment 1, when they were housed individually
to permit measurement of food intake. Diet and
deionized drinking water were available at all times.
The birds were wing-banded at 7 days of age and
were weighed at weekly intervals. In experiment 1,
groups of 10 birds each were fed with either a soy
isolate or a casein-gelatin diet (Tables 1 and 2). In

Table 1. Composition of control diets.”

Casein-gelatin  Soy isolate

Component diet, g/kg diet, g/kg
Casein, vitamin test® 280 —_
Gelatin® 70 —
Soy isolate — 350
Glycine® 5 5
pL-Methionine? 6 6
L-Arginine - HCK 6 —
Choline dihydrogen citrate® 8.44 6.33
Corn oil 40 40
Salts® 58 58
Glucose monohydrate 526.56 534.67

2 Component sources, except as noted, and levels of vitamins
as reported (12).

b Teklad, Madison, Wisc.

¢ Wilson, 2X gelatin, 75 bloom, Wilson Foods Corp., Calumet
City, IIl.

4 NRC grade, Teklad.

¢ Supplied per kg diet: CaHPO,, 28.4 g; CaCO,, 10 g;
Na,HPO,, 7 g; NaCl, 4 g; KCl, 7 g; Na,SeO,, 0.44 mg. Reagent
grade chemicals, J. T. Baker Chemical Co., Phillipsburg, N. J.;
Na,SEO,, Alfa Inorganics, Beverly, Mass. See Table 2 for
amounts of cadmium, zinc, iron, manganese, copper, and mag-
nesium.
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Table 2. Principal compositional differences between the casein-
gelatin (CG) and soy isolate (S) control diets.”

Diet Cd Zn Fe Mn Cu Mg Phytic acid
Dietary component, mg/kg diet

CG 006221 20 100 2.5 1.5 300 0

S 0.07506 30 100 12 5.6 300 7000
Proportion in protein, %

CG 0.34 56 2 1 22 5 0

S 17.40 38 65 19 100 2 100
Proportion in other components, %¢

CG 0000 — — 32 41 — —

¢ The balance of noncontaminant elements was supplied by
cadmium chloride, zinc carbonate, ferric citrate (16% iron),
manganous sulfate monohydrate, cupric sulfate, and magnesium
sulfate. Reagent grade chemicals, J. T. Baker Chemical Co.,
Phillipsburg, NJ, were finely ground and thoroughly premixed
with glucose monohydrate. Mineral premixes and protein were
assayed by atomic absorption spectrophotometry to provide pre-
cise dietary control. The amounts of minerals in each diet met the
requirements with no excess (/8-20 and unpublished data). The
same batches of each protein were used in both experiments. The
amounts of protein per kg of diet were: casein, 280; gelatin, 70;
and soy isolate, 350.

® Estimated from analysis of other lots of soy isolate.

¢ Amounts of components other than purified protein and
chemical source of individual elements. Due to the higher dietary
levels of manganese and copper in the soy diet, the small
amounts of these elements in other components were not in-
cluded in the dietary calculations.

@ It was not possible to assay the calcium salts.

experiment 2, 40 day-old birds were fed the casein-
gelatin diet (Tables 1 and 2) for 1 week and 20 birds
were fed the soy diet. On day 7, the birds were
redistributed by body weight into 4 groups of 10
birds each; 3 groups were fed the casein-gelatin diet
and one group was fed the soy diet. Excess birds at
the weight extremes were eliminated so that the
mean body weights + SE were 20.0 + 0.47 g and
20.3 = 0.30 g for the casein-gelatin and soy isolate
diets, respectively. The birds continued to receive
the same diets except that the zinc concentrations in
the casein-gelatin diets were adjusted to totals of 12
and 60 ppm for 2 of the groups.

Accelerator-produced carrier-free Cd (as the
chloride) in 0.1N HCl (New England Nuclear
Corp., Boston, Mass.) was premixed with glucose,
freeze-dried, finely ground in a mortar, and mixed
with each diet to provide 100 w.Ci '*Cd/kg diet. The
labeled diet was fed to the birds from 7 to 14 days of
age. Total food intake of each bird during the sec-
ond week was measured in experiment 1.

The birds were decapitated on day 14 without a
prior fast. The liver was removed, washed in 0.75%
NaCl solution, and blotted with tissue. In experi-
ment 1, the intestinal tract was closed with a
hemostat placed immediately distal to the ven-
triculus to prevent contamination of tissues with
109Cd in the digesta, and the entire intestinal
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tract was removed. The duodenum was defined as
the loop encircling the pancreas and the jejunum-
ileum was the next section of small intestine ter-
minating at the cecal juncture. The sections of small
intestine were placed on pieces of rigid plastic,
opened longitudinally, washed thoroughly with a
stream of 0.75% NaCl solution to remove all intesti-
nal contents, and blotted with tissue. The kidneys
were blotted in situ to remove any blood. They were
removed with bent stainless steel microspatulas
with sharpened edges. All tissues were immediately
placed in preweighed vials with tightly fitting caps.
In experiment 2, tissues were removed identically
except that the proventriculus and ventriculus were
also excised, opened, and washed with saline to re-
move all contents.

The tissue weights were obtained and the whole
tissues were solubilized in 5 ml concentrated nitric
acid (redistilled, G. F. Smith, Columbus, Ohio) and
diluted with deionized water to a final volume of 10
ml. Except for some residual fat, each tissue was
completely solubilized. Radioactivity of the tissues
and 0.5 g samples (in triplicate) of diets similarly
solubilized were measured in a Nal (Tl) crystal
scintillation detector (Model 5285, Packard Instru-
ments, Des Plaines, Ill.). An integral window was
employed to maximize efficiency and the tissues
were counted to an error of less than 2%. All sam-
ples had identical geometry.

After measurement of 'Cd in experiment 2, the
solubilized tissues were transferred to large test
tubes; 20 ml of a 5:1 mixture (volume:volume) of
nitric and perchloric (70%, double distilled, G. F.
Smith) acids were added. The tissues were wet-
digested and diluted to volume. To control viscosity
and minimize phosphate interference, the final so-
lution contained 10% glycerol and 0.7% perchloric
acid by volume (21). Half-gram samples of diet and
0.1 g samples of mineral premixes (in quintuplicate)
were similarly digested. Zinc, iron, manganese, and
copper were determined by atomic absorption
spectrophotometry (Model 503, Perkin-Elmer
Corp., Norwalk, Conn.). Cadmium in the cadmium
premix and magnesium in the diets and magnesium
premix were similarly determined. By these tech-
niques, analytical values for the same elements in
Bovine Liver, Standard Reference Material 1577
(National Bureau of Standards, Washington, DC)
fell within the certified ranges.

Triplicate 3 g samples of casein, gelatin, and soy
isolate were wet digested with 20 ml nitric and per-
chloric acids (5:1, volume:volume) and 1 ml con-
centrated sulfuric acid (G. F. Smith) and were as-
sayed for cadmium by differential pulse anodic
stripping voltammetry (22). The cadmium concen-
tration of all remaining dietary components minus
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protein, calcium phosphate, and calcium carbonate
was similarly determined. Formation of precipitates
with the calcium salts prevented their analysis for
cadmium. The cadmium concentrations were 37.3
ng/g soy isolate and 3 ng/g gelatin. The cadmium in
casein and other dietary components (exclusive of
protein and calcium salts) was below the detection
limits (<3 ng/g).

The tissue cadmium concentrations derived from
the diet fed between 7 and 14 days of age were
calculated from the specific activity of the added
cadmium, 62 ug/kg. We have repeatedly observed
linear log-dose, log-tissue concentrations and iden-
tical tissue retentions of cadmium within this die-
tary range of cadmium fed in one of several dietary
matrices (/2, 16, unpublished data). The use of
added cadmium provided a constant base level so
that comparisons could be made between the two
types of diets.

Statistically significant differences between group
means were based on use of Student’s ¢ test (23a).
Evaluation of response magnitude in relation to
dietary zinc level was based on correlation coeffi-
cients (23b).

Table 3. Effect of diet on growth, cadmium intake, tissue cad-
mium, and cadmium retention (experiment 1).

Total tissue Cadmium
No. Body Cadmium cadmium, retention,

Diet birds weight,g intake, ng ng® %’
CG 8 424+2.60 2380+128 358+50 14.7+2.0

S 10 42.7+1.82 2548 + 146

@ Means values + S.E.

% Based on the mean total cadmium content of the duodenum,
jejunum-ileum, liver, and kidneys and intake of added cadmium
(0.062 ppm).

¢ Values were significantly different from those for the CG
diet, p < 0.001.

1227 +78 48.0x 1.8

Results

Type of dietary protein did not affect body weight
or cadmium intake (i.e., food intake) of the birds
(Table 3). Birds fed the soy diet retained in the four
selected tissues almost half of the cadmium con-
sumed between 7 and 14 days of age, whereas birds
fed the casein-gelatin diet retained only about one-
sixth. The amounts in the small intestine were by far
the largest and accounted for most of this difference
(Table 4). Birds fed the soy diet had greater
amounts of cadmium in the liver.

There were no effects of diet on tissue weights,
except that the jejunum-ileum was significantly
larger in birds fed the soy diet (Table 4). Similar
results were obtained in experiment 2 (Table 5). The
level of dietary zinc in the casein-gelatin diet af-
fected neither body weight nor tissue weights.

The mineral concentrations in five tissues from
birds in experiment 2 are presented in Table 6. Birds
fed 20 ppm zinc were the normal requirement con-
trols for the casein-gelatin diet. There were some
differences in absolute concentrations of cadmium
in some tissues between experiments 1 and 2. The
relative effects of diet on cadmium in the intestinal
tract segments were the same; however, the values
for the liver in experiment 2 were not different from
those in experiment 1. With respect to other ele-
ments, the diet did not cause marked differences
except that birds fed the soy diet had markedly
lower amounts of iron in the duodenum and liver,
and higher amounts of manganese and copper in all
tissues.

With increasing levels of zinc in the casein-gelatin
diet, there were increased concentrations of zinc in

Table 4. Effect of diet on tissue weight and cadmium content (experiment 1).°

Tissue cadmium

Tissue

weight, Total Cd, Retention,
Diet Tissue mg Cd, ng/g ng %
CG Duodenum 509 + 28 365 + 46 189 + 25 7.8+1.0
N 536 + 19 1111 + 65¢ 594 + 37¢ 234+ 1.4
CG Jejunum-ileum 580 + 47 268 + 47 161 =31 6.5+1.3
S 753 £ 42 832 + 70¢ 623 + 60r 24.6 1.5
CG Liver 1421 + 121 3.23 = 0.21 4.56 + 0.43 0.19+0.01
S 1468 + 89 4.15 = 0.25¢ 6.07 + 0.50¢ 0.24 +0.02¢
CG Kidneys 450 + 34 8.76 + 0.98 3.90+0.43 0.16 = 0.02
N 415+ 24 7.62 = 0.55 3.15+0.30 0.12 £ 0.01¢

@ Mean values + SE.
® Proportion of the dietary intake retained by the given tissue.

¢ Values are significantly different from those for the CG diet, p < 0.001.

¢ Significantly different from CG, p < 0.01.
¢ Significantly different from CG, p < 0.05.
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Table 5. Effects of diet and zinc level on growth and tissue weights (experiment 2).”

Tissue weight, mg

Dietary No. Body Proventriculus- Jejunum-
Diet zinc, ppm birds weight, g ventriculus Duodenum ileum Liver Kidneys
CG 12 10 44.8 + 1.34 1072 = 57 524 + 31 593 = 52 1557 = 90 458 + 30
20 10 46.3 + 1.21 1043 + 53 560 + 32 556 + 37 1580 + 76 481 + 20
60 10 45.1 = 0.89 999 + 40 493 + 19 540 + 34 1552 + 64 472 + 21
S : 30 10 459 + 1.32 1162 + 62 562 + 22 707 + 33 1746 = 73 408 + 24
¢ Mean values + SE.
b Values were significantly different from those of group fed 20 ppm zinc in CG diet, p < 0.01.
Table 6. Effects of diet and zinc levels on tissue mineral concentrations (experiment 2).*
Tissue mineral concentrations
. Dietary zinc, Cadmium, Zinc, Iron, Manganese, Copper,
Diet ppm Tissue ng/g ng/g re/g relg re/g
CG 12 Proventriculus- 97 + 8.6 23.7 = 0.37° 323 £ 1.3 0.57 + 0.045 2.16 = 0.19
20 ventriculus 106 + 8.0 25.6 = 0.43 373 £ 1.7 0.59 + 0.041 2.38 + 0.09
60 76 + 3.8 320 = 1.31%¢ 354+ 1.4 0.46 = 0.043> 2,07 = 0.11°
S 30 69 + 4.6 32.7 = 0.93 314 x 1.4 2.43 = 0.181>° 4.49 + 0.24°
CG 12 Duodenum 764 + 56 29.1 + 1.31° 180 + 31 1.31 £ 0.095* 2.89 + 0.24
20 394 + 50 39.7 = 1.37 132 + 26 0.80 + 0.068 3.04 + 0.23
60 394 + 30° 52.6 + 4.46"¢ 98 + 17¢ 0.91 = 0.057° 3.39 = 0.11
S 30 794 + 74 35.6 = 2.07 41 + 4 2.53 £ 0.0977 5.61 = 0.43°
CG 12 Jejunum-ileum 457 + 41° 26.5 + 0.60° 118 = 12.2>  0.87 = 0.063> 2.44 + 0.16
20 161 + 26 33.6 + 1.31 65 + 8.9 0.43 + 0.088 2.34 + 0.10
60 63 = 7 453 + 3.44>¢c 46 = 5.1° 0.75 £ 0.090° 2.64 = 0.13
S 30 821 + 118 31.5 + 1.52 47 = 2.1 2.25 = 0.082> 3.95 + 0.26"
CG 12 Liver 4.13 = 0.31 20.4 = 0.73 167 + 15 2.29 + 0.22 4.46 + 0.32
20 3.71 = 0.30 21.3 =+ 0.56 153 = 13 1.79 = 0.12 4.32 + 0.19
60 3.11 = 0.25¢  23.1 + 1.05° 163 + 17 1.55 + 0.08° 4.56 = 0.18
S 30 4.17 = 0.28 20.7 = 0.56 80 + 13 4.00 = 0.13° 6.28 + 0.47°
CG 12 Kidneys 8.29 + 0.48 20.9 + 0.66 107 = 7 1.69 = 0.10° 3.56 + 0.20
20 8.88 + 0.88 20.2 + 0.33 104 + 3 1.33 £ 0.09 343 +0.14
60 848 + 0.49 233 + 0.54%c 105 +6 1.36 + 0.05¢ 3.68 + 0.09
S 30 10.50 = 0.75 24.0 = 0.68° 110 = 8 2.89 + 0.10° 4.24 + 0.11°

@ Mean values + SE.

b Values were significantly different (p < 0.05) from those of the group fed 20 ppm zinc.
¢ Values were significantly different (p < 0.05) from those of the group fed 60 ppm zinc as compared with 12 ppm zinc.

all tissues (Table 6). As dietary zinc increased, there
was a general decrease in cadmium concentrations
for all tissues except the kidneys. These relation-
ships are all supported by statistically significant
correlation coefficients (Table 7). The linear corre-
lations between tissue zinc concentration and tissue
cadmium concentration were statistically significant
only between the duodenum and jejunum-ileum.
The highest correlation coefficient for tissue zinc
versus tissue cadmium was obtained for the
jejunum-ileum and the range in cadmium concen-
trations was the highest for any tissue. Since the
changes in liver cadmium represented the most im-
portant effect in this study, the correlation coeffi-
cient for jejunum-ileum versus liver cadmium was
calculated. It was statistically significant (p < 0.05).

The concentrations of iron in the two small intes-
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tinal segments were generally inversely related to
dietary zinc concentration (Table 6). A sensitive
relationship between zinc and manganese was ob-
served. Except for the jejunum-ileum, there was
generally an inverse relationship between tissue
manganese concentration and dietary zinc level.
Dietary zinc had minimal effects on tissue copper
concentrations.

Discussion

Facets of the Experimental Model Pertinent
to Interpretation of the Data

This experimental model was designed to obtain
data that may have some significance to man, under
dietary conditions that could be modified readily
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Table 7. Correlations between zinc and cadmium in birds fed the
casein gelatin diet (experiment 2).*

Variables Tissue(s) r p
Dietary Zn vs. tissue Cd PV 0.449 <0.05
D 0.618 <0.01
JI 0.685 <0.01
L 0.457 <0.05
K 0.025 NS¢
Dietary Zn vs. tissue Zn PV 0.835 <0.01
D 0.783 <0.01
JI 0.826 <0.01
L 0.455 <0.05
K 0.557 <0.01
Tissue Zn vs. tissue Cd PV 0.208 NS
D 0.627 <0.01
JI 0.695 <0.01
L 0.106 NS
K 0.023 NS
JICdvs. L Cd JLL 0.458 <0.05

@ Calculations are for logs of all values; n = 30.

® PV = proventriculus-ventriculus; D = duodenum; JI =
jejunum-ileum; L = liver; K = kidneys.

¢ Not significant.

with respect to the level of specific nutrients and the
feasibility of adding conventional human foods in
future experiments. Cadmium was administered by
feeding at levels comparable to those in the diet of
man (6). Essential nutrients were present at levels
required by the quail insofar as they are known.
Excesses of essential nutrients were avoided insofar
as possible and no substances were added to the
diet that were not required.

Requirements for the quail have been determined
by feeding the same graded dietary levels of a min-
eral for either 2 or 4 weeks. It was found, however,
that the minimal level required after one week was
less than that required during the first week, as the
growth data in Table 5 illustrate for zinc. By lower-
ing the dietary zinc from the required level of 20
ppm by 40%, to 12 ppm, growth and gross develop-
ment during the second week were normal. This is
the minimal adequate level of zinc for the second
week. It is likely, therefore, that as the normal
growth rate slowed during the second week, the
levels of other nutrients were present in excess of
requirements. Changes in nutrient requirements for
human beings have been established in relation to
age and growth rates (24); however, requirements
for experimental animals have been limited to one
set of requirements for the growth period (25). The
practice of determining animal requirements by
stepwise doubling the nutrient concentration in the
diet and forcing maximal weight gain may also have
resulted in establishing requirements that were rel-
atively higher than the requirements set for man.
These traditional types of control diets for animals
have probably influenced experimental results to
indicate lesser problems with cadmium than would
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be true for human populations, whose nutrient in-
takes may not exceed or even meet requirements
“@).

The zinc levels were selected to fall within the
requirement range. A lower level of zinc, which
would have decreased growth rate, was avoided so
that tissue concentrations of cadmium could be
compared between groups without the need to ob-
tain data on individual diet consumption. This per-
mits the study of larger numbers of variables per
experiment; however, an investigation of the effects
of deficiency, either before or during the test
period, would require a different model. The highest
level of zinc was the same as had provided protec-
tion against low levels of cadmium fed in the soy
diet (I5). It does not represent an impossibly high
level, as related to requirement, in terms of supple-
ments for human beings under unusual circum-
stances of high cadmium exposure.

The tissue concentrations of cadmium at 14 days
of age result from a spectrum of metabolic pro-
cesses that probably proceeded at different rates
during the final 7-day period. Most of our data in-
clude changes that seem to be due to nutritional
effects upon intestinal absorption of cadmium. With
higher cadmium levels, feeding cadmium for 48 hr
immediately prior to killing at 14 days of age re-
sulted in a high cadmium uptake by the duodenum
and marked decreases in duodenal iron concentra-
tions (26), and morphological abnormalities of the
villi 27). It is thought, therefore, that changes at the
intestinal level occurred early in the week of these
experiments. Since 1°Cd was fed for the last 7 days
of this experiment, the distribution of Cd among
the various organs, particularly that in the liver and
kidneys, is the sum of cadmium consumed at differ-
ent times and of metabolic and transport processes
that have not been defined with respect to time.

Effects of Dietary Zinc on
Tissue Cadmium Levels

It is significant that supplemental zinc protects
against dietary cadmium over a range of intakes
from less than 0.1 ppm in this experiment to 80 ppm
in the first study by Supplee (28). High levels of
cadmium interfere with zinc absorption and pro-
duce signs of deficiency; however, the levels of
cadmium of importance to man are far below the
levels that interfere with zinc as an essential nu-
trient. More subtle interactions at binding sites in-
volved in transport and residence in tissues are un-
doubtedly involved in the latter case.

The best dose-response_ to zinc was found in the
jejunal-ileal section of the small intestine. De-
creases of cadmium in this section have been cor-
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related with decreases in the liver and/or kidney (12,
15). The greater difference between cadmium con-
centrations in the jejunal-ileal section from birds fed
12 versus 20 ppm zinc, as compared with 20 versus
60 ppm zinc, may be indicative of a more significant
effect of zinc at deficient than at excess levels. This
places emphasis on correcting zinc deficiency in
human beings exposed to typical background levels
of cadmium rather than administering zinc in excess
of requirement, where safety of the zinc supple-
ments is not well defined. In other persons exposed
to high levels of cadmium, either industrially or via
environmental contamination, supplements of zinc
in excess of requirement should be useful. A con-
trolled study of zinc supplements in such a popula-
tion is needed.

As zinc concentrations in the diet increased, not
only did zinc concentrations in the tissues increase,
but the concentrations of iron, manganese, and
copper decreased in one or more tissues. Single
supplements of manganese and copper had some
small effects in increasing tissue cadmium concen-
trations from low dietary intakes (/4). It is not
known what effects deficiencies of these two ele-
ments might have upon uptake under these condi-
tions. Flanagan et al. (8) showed that low iron
status, as indicated by low serum ferritin values,
was associated with high absorption of 25 ug cad-
mium with '5"Cd as the chloride consumed in a
single meal by human volunteers (8). Flanagan et al.
(8) also showed that in mice a tracer of 1Cd as the
chloride given with 1.12 ppm cadmium in the
drinking water was bound primarily to larger pro-
teins in the liver and kidneys rather than to metal-
lothionein. With a high intake of cadmium the re-
verse distribution has been found. Additional
studies are needed on the absorption and metab-
olism of low levels of cadmium, and the manner in
which cadmium is influenced by other essential
elements, both individually and interacting with
each other. From a practical viewpoint, differentia-
tion is needed between the effects of mineral status
(deficient and excess) and the mineral levels con-
sumed directly with cadmium.

Effects of Diet Type on Tissue
Cadmium Levels

The lower levels of cadmium in the duodenal and
the jejunal-ileal sections of birds fed the control
casein-gelatin diet (20 ppm zinc) were not as-
sociated with similarly lower levels of cadmium in
the liver as compared with birds fed the soy diet.
Although increasing the zinc content of each diet
decreased cadmium in both the jejunum-ileum and
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the liver, the use of cadmium content of the
jejunum-ileum as an index to bioassay cadmium in
natural foods now appears equivocal because of the
differences between the two types of control diets.
It is possible, but unproven, that given dietary sup-
plements would influence cadmium uptake by the
jejunum-ileum and liver similarly with each diet.
This was true for jejunal-ileal cadmium uptake from
oysters (16). The correlation in this study of
jejunal-ileal cadmium concentrations with liver
concentrations supports the validity of the ap-
proach. The range in liver values with the graded
zinc levels was relatively small (Table 6), much
smaller than would be expected in a bioassay with
cadmium fed at three levels (/2); therefore, correla-
tions of cadmium in the two tissues in a bioassay
range should be good.

The differences in jejunal-ileal weight and the
concentrations of essential minerals in intestinal tis-
sue all may have affected tissue cadmium levels
apart from characteristics of the dietary proteins.
Table 2 shows that much higher proportions of die-
tary iron, manganese, and copper were supplied by
the soy protein than by the casein-gelatin. Although
total dietary levels of each element except copper
were established at levels to meet requirements
with no excess, the relative decreases in require-
ment during the second week may have been differ-
ent for each diet. Phytate in soy may affect cad-
mium directly or indirectly by its effect on zinc.
Some more minor components of the soy isolate
may also be involved.

The complexity of the apparent interrelations
among the essential elements themselves, and par-
ticularly in relation to cadmium, makes one cau-
tious in drawing conclusions regarding the best
dietary mineral levels to minimize adverse effects of
cadmium. The relative hazard of cadmium in an in-
dividual food must still be evaluated on the basis of
total cadmium content until data are obtained on the
bioavailability of cadmium in human foods.

The authors thank Ms. Mildred Johnson and Mr. Marcus N.
Morra for excellent technical assistance and Mr. J. E. Etherith
for care of the birds.
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